Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

(0 2-category 2-category-theory abelian-categories accessible adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty book bundle bundles categories category category-theory chern-simons-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology cohomolohy combinatorics complex complex-geometry computable-mathematics computer-science connection constructive constructive-mathematics cosmology deformation-theory descent differential differential-cohomology differential-geometry dold fibration duality elliptic-cohomology enriched factorization-system fibration foundations functional-analysis functor galois-theory gauge-theory gebra general topology geometric geometric-quantization geometry gravity group-theory higher higher-algebra higher-category-theory higher-geoemtry higher-geometry higher-lie-theory higher-topos-theory history homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory infinity integration-theory internal-categories k-theory kan lie lie-algebras lie-theory limit limits linear linear-algebra locale localization logic manifolds mathematics measure measure-theory meta modal-logic model model-category-theory monoidal-category monoidal-category-theory morphism motives motivic-cohomology n-groups newpage nonassociative noncommutative noncommutative-geometry number-theory operator operator-algebra order-theory philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory subobject supergeometry symplectic-geometry tannaka terminology theory topology topos topos-theory torsor tqft type type-theory variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 16th 2012

    I hope to be adding bits and pieces to an article real coalgebra, which I’ve started. (In some sense it might fit better on my web, but for some reason I’m placing it on the main nLab.)

    • CommentRowNumber2.
    • CommentAuthorjim_stasheff
    • CommentTimeSep 17th 2012
    If it's not too late, would suggewst retitling: Coalgebra of the reals or coalgebra of the real interval. I found the current title misleading.
    • CommentRowNumber3.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 17th 2012

    Okay, thanks for the feedback! I’ll consider that.

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeSep 17th 2012

    I’d second that. It would be good if the word “interval” appeared in the title.

    • CommentRowNumber5.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 17th 2012

    It does now.

    • CommentRowNumber6.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 17th 2012

    Or, at least it would if it weren’t for the !@#$%^ cache bug. Was supposed to redirect to coalgebra of the real interval.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeSep 17th 2012

    I have cleared the cache of the entry. Should work now.

    • CommentRowNumber8.
    • CommentAuthorTobyBartels
    • CommentTimeSep 17th 2012

    It does redirect. Only the cache bug makes you think that it doesn’t.

    • CommentRowNumber9.
    • CommentAuthorDavid_Corfield
    • CommentTimeSep 19th 2012
    • (edited Sep 19th 2012)

    Hi Todd, is there some connection between Freyd’s real interval as a coalgebra, and co-categories? Why do we represent morphisms by interval-like notation? But then if categories are defined by composition, maybe we’d expect the initial algebra to appear, i.e., dyadic rationals, as here. I guess at least its completion is the real interval.

    Oh, I thought this rang a bell with something to do with you said on the Cafe. Here’s John Baez over there

    Todd was too modest to emphasize it here, but the observation that the closed unit interval is an A∞-cocategory is key to his definition of ∞-categories.

    Here are some of the basic ideas, too basic too be explained so far in the nLab entry.

    An arrow looks like an interval. So, the theory of categories and even n-categories should have a lot to do with the interval — especially when it comes to applications to topology!

    In a category we can glue arrows together, ‘composing’ them. But an interval can be chopped apart or ‘decomposed’ into a bunch of intervals. So, there should be a cocategory or something like that lurking around here.

    In fact the closed unit interval gives an A∞-cocategory: a cocategory where the laws hold up to homotopy, where the homotopies satisfy nice laws up to homotopy, ad infinitum.

    The space of maps out of an A∞-cocategory into something should form an A∞-category. So, the space of maps out of an interval into a space forms an A∞-category. And this is an important first step in how Todd constructs the fundamental n-groupoid of a space!

    But the really cool part is how this construction goes hand in hand with his definition of n-categories, in an inductive kind of way.):

    • CommentRowNumber10.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 19th 2012

    Hi David – yes, this is very much what I had in mind when I felt the urge to write things down. Basically I want to derive all the A A_\infty cocategory stuff by means of coinduction. As part of this, I want to be able to first of all derive the convexity structure of II (the ternary operation (t,x,y)tx+(1t)y(t, x, y) \mapsto t x + (1-t)y) from the terminal coalgebra structure. But the road to that seems to be a little longer than I was expecting!

    Just deriving the midpoint operation alone takes a lot more work than Freyd was letting on to in his first real coalgebra postings at the categories list. But maybe it gets easier from there, once you have it.

    (Side note: all of this is also to be related to the Thompson group in an appropriate way.)

    Actually, ultimately, I want to bring “my” nn-categories more into the fold of (,n)(\infty, n)-category theory in its geometric forms, as Urs has long been urging me to do.