Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

(0 2-category 2-category-theory abelian-categories accessible adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty book bundle bundles categories category category-theory chern-simons-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology combinatorics complex complex-geometry computable-mathematics computer-science connection constructive constructive-mathematics cosmology deformation-theory derived-geometry descent differential differential-cohomology differential-geometry dold fibration duality elliptic-cohomology enriched factorization-system fibration foundations functional-analysis functor galois-theory gauge-theory gebra general topology geometric geometric-quantization geometry gravity group-theory higher higher-algebra higher-category-theory higher-geoemtry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory infinity integration-theory internal-categories k-theory kan lie lie-algebras lie-theory limit limits linear linear-algebra locale localization logic manifolds mathematics measure measure-theory meta modal-logic model model-category-theory monoidal-category monoidal-category-theory morphism motives motivic-cohomology n-groups newpage nonassociative noncommutative noncommutative-geometry number-theory operator operator-algebra order-theory philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory subobject supergeometry symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory torsor tqft type type-theory variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeAug 14th 2012

    stub for automorphic form,to go with the blog discussion here

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeAug 14th 2012

    I have added to the Idea-section a the table that maybe nicely motivates what the whole subject is about.

    • CommentRowNumber3.
    • CommentAuthorzskoda
    • CommentTimeAug 14th 2012

    It looks like the entry should be called topological automorphic form while automorphic form should be a separate entry (I do not believe two such huge subjects can fit into a single entry).

    • CommentRowNumber4.
    • CommentAuthorDavid_Corfield
    • CommentTimeAug 14th 2012
    • (edited Aug 14th 2012)

    Yes, at the moment we have modular form, topological modular form and tmf. Presumably we should have automorphic form, topological automorphic form and taf.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeAug 14th 2012

    It looks like the entry should be called topological automorphic form

    It is! :-)

    • CommentRowNumber6.
    • CommentAuthorzskoda
    • CommentTimeAug 14th 2012

    OK, created stub for classical automorphic forms and moved Norman Wallach’s reference there, and done some linking.

    • CommentRowNumber7.
    • CommentAuthorTodd_Trimble
    • CommentTimeAug 14th 2012

    It’s Nolan Wallach. I’ve made the change.

    • CommentRowNumber8.
    • CommentAuthorDavid_Corfield
    • CommentTimeAug 14th 2012

    Re the table mentioned at 2, if we have

    (1,1)-dimensional Euclidean field theories and K-theory

    and

    (2,1)-dimensional Euclidean field theories and tmf,

    are we supposed to have

    (n,1)-dimensional Euclidean field theories and taf?

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeAug 14th 2012

    David,

    I was asking people precisely this question today at the conference. So far nobody seems to know anything beyond that it is an evident guess. But I’ll check with further people later. Not everybody seems to have arrived yet.

    • CommentRowNumber10.
    • CommentAuthorDavid_Corfield
    • CommentTimeAug 14th 2012

    John was guessing at something like this back in TWF 197:

    In particular, they show how the spectrum for complex K-theory can be built from the space of supersymmetric 1d field theories, just as the spectrum “tmf” is (conjecturally) built from some space of supersymmetric conformal field theories. Being an optimist, I can’t help but hope this pattern goes on something like this:

    some cohomology theory that detects v nv_n-periodic phenomena

    connections on complex “n-vector bundles”

    some supersymmetric field theories on n-dimensional spacetime

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeAug 14th 2012
    • (edited Aug 14th 2012)

    The last two items correlate clearly. But I am not sure how to see why it is specifically TAF that comes out for higher dimensional SQFTs. If it does.

    • CommentRowNumber12.
    • CommentAuthorDavid_Corfield
    • CommentTimeAug 15th 2012
    • (edited Aug 15th 2012)

    Perhaps a crazy thought, but looking at this slide from a talk by Behrens, wouldn’t you expect an extension of the Whitehead tower to Fivebrane to give something interesting?

    As you co-kill the homotopy groups, O(n)O(n) comes to resemble the trivial group more closely, and we get closer to what Behrens calls Ω * e\Omega^{e}_{\ast}, isomorphic to stable homotopy. So Ω * Fivebrane\Omega^{Fivebrane}_{\ast} should see more v nv_n periodic behaviour.

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeAug 15th 2012

    Perhaps a crazy thought, but looking at this slide from a talk by Behrens, wouldn’t you expect an extension of the Whitehead tower to Fivebrane to give something interesting?

    Yes, certainly, that’s why the Fivebrane group is called such: just as Spin-structures make the super-particle i.e. the super 1d QFT be well-defined, and String-structures makes the heterotic string, i.e. the super 2d QFT be well defined, so Fivebrane structures similarly relate to super 6-dimensional QFT.

    But, while we know that FIvebrane structures cancel the “fermionic anomaly” of the 5-brane, otherwise very little is known about that 6d QFT, as of yet.

    • CommentRowNumber14.
    • CommentAuthorDavid_Corfield
    • CommentTimeAug 15th 2012

    But what links all this to the homotopy groups of the sphere? What is the equivalent for Fivebrane of TMF for String? Is there a ring-valued genus from Ω Fivebrane\Omega^{Fivebrane} to some ring?

    • CommentRowNumber15.
    • CommentAuthorUrs
    • CommentTimeAug 15th 2012

    I don’t have any definite answers to these questions. It seems that most the 6-d analogs of the corresponding 2-d ingredients of the story are very much not understood yet.

    • CommentRowNumber16.
    • CommentAuthorUrs
    • CommentTimeAug 15th 2012
    • (edited Aug 15th 2012)

    I have checked again with Hisham Sati. He tells me that in the 2008 talk where he talked about Fivebrane structures, he already stated a conjecture that there will be a morphism from Ω Fivebrane\Omega^{Fivebrane} to topological automorphic forms. I didn’t know about that, to be frank.

    If I find out more that I may share, I’ll let you know.

    • CommentRowNumber17.
    • CommentAuthorzskoda
    • CommentTimeAug 15th 2012

    Thanks Todd for Nolan. It sliped my mind. Is anybody having a fie of his book on Fourier transform and symplectic geometry. It is a simple old book whose simplicity made me always easily remember the stuff. But I have not seen it since leaving United States…

    • CommentRowNumber18.
    • CommentAuthorDavid_Corfield
    • CommentTimeAug 15th 2012

    Re 16, that would seem to be a good move to link your work up to topological automorphic forms. There does seem to be considerable interest.

    If I have this height business correct, I think Fivebrane would pick up v 6v_6 periods. It seems that K3-cohomology can get up to height 10, and the Shimura variety approach could get to any height.

    • CommentRowNumber19.
    • CommentAuthorhilbertthm90
    • CommentTimeAug 16th 2012

    Wow. I wrote up the page height of a variety over a year ago. I’m shocked that it comes up in this topic. My thesis work has a lot to do with height, p-divisible groups, and liftability for K3 surfaces and Calabi-Yau threefolds and the relation to the derived category. This is very interesting since the motivation was very different for me.

    • CommentRowNumber20.
    • CommentAuthorDavid_Corfield
    • CommentTimeAug 17th 2012

    Anything on the link between height and detection of v nv_n periodic behaviour would be good to add, e.g., Ravenel on p. 15 of these slides.

    • CommentRowNumber21.
    • CommentAuthorUrs
    • CommentTimeJul 19th 2014
    • (edited Jul 19th 2014)

    I have tried to give automorphic form an Idea section with some minimum actual idea in it. Of course this needs to be expanded a lot further.

    • CommentRowNumber22.
    • CommentAuthorDavid_Corfield
    • CommentTimeJul 19th 2014

    I hadn’t realised they were quite so general. So a function on a homogeneous space counts?

    By the time it’s been properly homotopified, what results? Functors on certain action \infty-groupoids?

    • CommentRowNumber23.
    • CommentAuthorUrs
    • CommentTimeJul 19th 2014
    • (edited Jul 19th 2014)

    So in each context one adds conditions that these functions on these cosets are suitably well-behaved. But what this means is not set in stone and is being adapted as necessary in applications. But I have added to the entry now some indications of some such conditions.

    Regarding the homotopification: so if geometric Langlands is correct then we are done: the homotopification of automorphic functions is Hitchin connections/prequantum line bundles on moduli \infty-stacks of higher gauge fields.